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An elliptic fire model [1] has been developed and used to numerically investigate the validity
of the commonly used k¥ — ¢ turbulence model and its modified variations in simulating buoyancy
dominated diffusion flames. The present model consists of 2D time averaged conservation equations
for mass, momentum and energy. Turbulence is modeled using the k& — ¢ turbulence model and
the Eddy Dissipation Concept is used for combustion. Flame radiation is also accounted for by a
constant fraction assumption. The governing equations are solved using a pressure based control
volume method on a collocated variable arrangement.

This model is used to simulate the 2D rectangular propane flame of Annarumma et al. [2].
Details of the numerical setup used in the present simulations (e.g. boundary conditions, grid size,
etc. ) can be found in [1]. Figure (1) shows the predicted velocity and temperature fields. Although
centerline values of the vertical velocity and temperature are predicted reasonably well, the lateral
spread of the fire is clearly underpredicted (as reported by other authors as well, e.g. [2 3]).
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ature is rising. This causes the buoyancy production
term to become negative and suppress turbulence in
that region. The latter may partially explain the
underprediction of the fire spread. 05¢
To investigate the effects of the buoyancy pro-
duction term in the %k equation, the results obtained Hi
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for (case I) are compared with the results obtained _ X/ hall width )
from another case where only positive values of 8p/9z Figure 1: Temperature contours and velocity
are considered (case II). Results show that turbulent vectors
Reynolds numbers for case IT are much higher than those for case I. In fact, the values of Re, for
case I near the fire base are so low that the validity of using any turbulent fire model is questionable.
The lateral profiles of vertical velocity and temperature at different heights above the burner
are shown in Figures (2) and (3) and compared against experimental data. As evident in these
figures, considering only positive values of buoyancy production in the k equation improves the
lateral spread of the fire at the cost of lowering the centerline values. Therefore, it appears necessary
to model the buoyancy production term such that a positive contribution is ensured. For improved
overall accuracy of the numerical results a more accurate chemistry and radiation models will also
be required.
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Figure 2: Cross-wise velocity distributions at different heights, see the caption of Fig. (3) for the
legend.
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Figure 3: Cross-wise temerature distributions at different heights, o data [2], — case I with 20%
radiation, --- Annarumma’s model {2], — — case II with 10% radiation, —. case /I with 20%

radiation
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